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An enantiodivergent synthesis of both enantiomers of methylenolactocin is described through stereocon-
trolled addition of n-pentyl magnesium bromide to two D-mannitol-derived diastereomerically related
aldehydes having an a-chiral center with a b hetero atom.
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Natural products containing a substituted c-butyrolactone unit
with a carboxylic acid at b position, commonly known as paraconic
acids,1 are ubiquitous. Many of these compounds exhibit a wide
range of interesting biological activities. Among them, methyleno-
lactocin 12 has attracted considerable attention because of its
strong antitumor, antibiotic activity, and densely functionalized
structure. A number of approaches have been developed for the
synthesis of 1 in racemic3,4 as well as in enantiomerically pure
form.5 The asymmetric route, reported so far, mainly dealt with
the synthesis of the natural enantiomer, (�)-methylenolactocin.
However, only a few approaches address the synthesis of (+)-
methylenolactocin. As part of our continued interest6 in asymmet-
ric synthesis of natural products containing c-lactone unit, we
planned to develop a strategy that would afford both enantiomers
of methylenolactocin from a single enantiomer.

A major challenge in the synthesis of methylenolactocin is the
control of trans stereochemistry between the 4,5-substituents.
However, total stereocontrol was observed only in a few ap-
proaches. We visualized that addition of an appropriate nucleo-
philic species to the aldehyde 2 would proceed stereoselectively
(Scheme 1). The ketal unit would play the crucial role in dictating
the stereochemical outcome. Generation of the carboxylic acid
moiety from the ketal unit at a latter stage would accomplish the
synthesis of 1. Thus, while 2 would provide one enantiomer of
methylenolactocin, its C-3 diastereoisomer would provide the
other enantiomer.
ll rights reserved.
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To begin with, D-mannitol was transformed to the masked suc-
cinates 4 and 5 following the protocol developed earlier by us7

(Scheme 2). Oxidative cleavage (OsO4–NaIO4) of the vinyl group
in 4 afforded the aldehyde 28 in 80% yield. Synthesis of methyleno-
lactocin from 2 required stereocontrolled addition of the appropri-
ate nucleophilic species to the aldehyde group in 2. In case,
addition of a Grignard reagent to the aldehyde 2 having an a-chiral
center proceeds through Felkin-Anh model 6, a trans disubstituted
product 7 is expected (Fig. 1). However, the aldehyde 2 has also an
oxygen atom at b to the aldehyde unit and addition might proceed
through a chelated intermediate 8. This would give rise to a cis
disubstituted product 9. Addition of Grignard reagent to an alde-
hyde having an a-chiral center with a hetero atom at b position
has been reported to proceed non-stereoselectively.9 With this
background, the aldehyde 2 was allowed to react with n-pentyl
magnesium bromide. To our delight, addition to the aldehyde 2
proceeded in a highly stereoselective fashion with spontaneous
lactonization of the hydroxy-ester 7 (R = n-C5H11) to give exclu-
sively the lactone 10 in 60% yield (Scheme 2). The lactone 10 could
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Scheme 1. A retrosynthetic route to methylenolactocin.
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Scheme 2. Synthesis of (�)- and (+)-methylenolactocin. Reagents and conditions: (a) OsO4–NaIO4, THF–H2O (2:1), 80–82%; (b) n-C5H11MgBr, THF, rt, 60–62%; (c) LDA, THF,
HCHO then MsCl, DCM, Et3N, 24 h, 50% in two steps; (d) (i) CH3CO2H–H2O (4:1); (ii) Jones reagent, acetone, 58–60% in two steps.
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Figure 1. Possible modes of RMgX addition.
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also arise by the addition of n-pentyl magnesium bromide through
a seven-membered chelate involving the ethyl ester oxygen. How-
ever, it is difficult to ascertain the actual reaction path involved for
the observed stereochemical outcome. The stereochemical assign-
ment to the lactone 10 was confirmed after its transformation to
methylenolactocin as described below. a-Methylenation of the lac-
tone 10 was achieved by reaction of its lithium enolate with form-
aldehyde followed by treatment of the resulting hydroxymethyl
derivative with methane sulfonyl chloride in the presence of excess
triethyl amine to afford the lactone 11 in overall good yield. a-
Methylene lactone 11 was transformed to (�)-methylenolactocin
1 through acid-catalyzed deketalization and Jones oxidation of
the resulting diol. Methylenolactocin, ½a�23

D �6.46 (c 0.5, MeOH)
(lit.5a ½a�23

D �6.7 (c 0.5, MeOH), thus obtained exhibits spectral data
closely comparable to those reported in the literature.

A similar protocol was followed for synthesis of (+)-methyleno-
lactocin from the succinate derivative 3. Treatment of 5 with OsO4–
NaIO4 led to the aldehyde 12 in 82% yield. Addition of n-pentyl
magnesium bromide to the aldehyde 12 gave the lactone 13 in
62% yield as the only isolable product. The lactone 13 was then
transformed to (+)-methylenolactocin 1, ½a�23

D +6.5 (c 1.5, MeOH)
through the a-methylene lactone 13 using the protocol described
above for transformation of 7 to (�)-1.

In conclusion, we have developed a simple route for the synthe-
sis of both enantiomers of methylenolactocin. The key step
involves stereocontrolled addition of n-pentyl magnesium bromide
to the aldehyde moiety of two diastereomerically related masked
succinate derivatives having an a-chiral center prepared from
D-mannitol.
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